Redox signaling, Nox5 and vascular remodeling in hypertension

نویسندگان

  • Augusto C. Montezano
  • Sofia Tsiropoulou
  • Maria Dulak-Lis
  • Adam Harvey
  • Livia De Lucca Camargo
  • Rhian M. Touyz
چکیده

PURPOSE OF REVIEW Extensive data indicate a role for reactive oxygen species (ROS) and redox signaling in vascular damage in hypertension. However, molecular mechanisms underlying these processes remain unclear, but oxidative post-translational modification of vascular proteins is critical. This review discusses how proteins are oxidatively modified and how redox signaling influences vascular smooth muscle cell growth and vascular remodeling in hypertension. We also highlight Nox5 as a novel vascular ROS-generating oxidase. RECENT FINDINGS Oxidative stress in hypertension leads to oxidative imbalance that affects vascular cell function through redox signaling. Many Nox isoforms produce ROS in the vascular wall, and recent findings show that Nox5 may be important in humans. ROS regulate signaling by numerous processes including cysteine oxidative post-translational modification such as S-nitrosylation, S-glutathionylation and sulfydration. In vascular smooth muscle cells, this influences cellular responses to oxidative stimuli promoting changes from a contractile to a proliferative phenotype. SUMMARY In hypertension, Nox-induced ROS production is increased, leading to perturbed redox signaling through oxidative modifications of vascular proteins. This influences mitogenic signaling and cell cycle regulation, leading to altered cell growth and vascular remodeling in hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research.

SIGNIFICANCE Reactive oxygen species (ROS) are signaling molecules that are important in physiological processes, including host defense, aging, and cellular homeostasis. Increased ROS bioavailability and altered redox signaling (oxidative stress) have been implicated in the onset and/or progression of chronic diseases, including hypertension. RECENT ADVANCES Although oxidative stress may not...

متن کامل

Redox signaling in hypertension.

Diseases such as hypertension, atherosclerosis and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many stimuli influence c...

متن کامل

Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells

Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)-induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle ...

متن کامل

Reactive oxygen species, NADPH oxidases, and hypertension.

Reactive oxygen species (ROS) produced in the neuronal, renal, and vascular systems not only influence cardiovascular physiology but are also strongly implicated in pathological signaling leading to hypertension. Different sources of ROS have been identified, ranging from xanthinexanthine oxidase and mitochondria to NADPH oxidase (Nox) enzymes. Of 7 Nox family members, Nox1, Nox2, and Nox4 (and...

متن کامل

Hypertension Highlights Reactive Oxygen Species, NADPH Oxidases, and Hypertension

Reactive oxygen species (ROS) produced in the neuronal, renal, and vascular systems not only influence cardiovascular physiology but are also strongly implicated in pathological signaling leading to hypertension. Different sources of ROS have been identified, ranging from xanthinexanthine oxidase and mitochondria to NADPH oxidase (Nox) enzymes. Of 7 Nox family members, Nox1, Nox2, and Nox4 (and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2015